Serverless Architecture: When and How to Go Serverless
Serverless computing allows you to build and run applications without managing servers. You write code, deploy it, and the cloud provider handles scaling, maintenance, and infrastructure.
What is Serverless?
Despite the name, servers still exist—you just don't manage them. Key characteristics:
Auto-Scaling: Scales automatically with demand Pay-per-Use: Only pay for actual execution time Managed Infrastructure: Provider handles servers, OS, runtime Event-Driven: Functions triggered by events
Popular Serverless Platforms
AWS Lambda
Most mature serverless platform:
// Lambda handler
export const handler = async (event: any) => {
const { body } = event
const data = JSON.parse(body)
// Process data
const result = await processData(data)
return {
statusCode: 200,
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify(result)
}
}
Netlify Functions
Simple deployment with Netlify:
// netlify/functions/hello.ts
import { Handler } from '@netlify/functions'
export const handler: Handler = async (event) => {
return {
statusCode: 200,
body: JSON.stringify({ message: 'Hello World!' })
}
}
Vercel Edge Functions
Run at the edge for low latency:
// api/hello.ts
export const config = { runtime: 'edge' }
export default async function handler(request: Request) {
return new Response(
JSON.stringify({ message: 'Hello from the Edge!' }),
{ headers: { 'content-type': 'application/json' } }
)
}
When to Use Serverless
Perfect For:
- APIs with variable traffic
- Event processing (image uploads, email notifications)
- Scheduled tasks (cron jobs)
- Webhooks
- Microservices
- Prototypes and MVPs
Not Ideal For:
- Long-running processes (15-minute limit)
- Stateful applications
- Applications requiring consistent latency
- Heavy computational tasks
- Legacy applications
Benefits
Cost Efficiency: Pay only for execution time Auto-Scaling: Handle traffic spikes automatically Faster Time-to-Market: Focus on code, not infrastructure High Availability: Built-in redundancy Zero Server Management: No patching, updating, or maintenance
Limitations
Cold Starts: First invocation can be slow Execution Time Limits: Max 15 minutes (AWS Lambda) Debugging Challenges: Distributed system complexity Vendor Lock-In: Platform-specific features State Management: Functions are stateless
Architecture Patterns
API Gateway + Lambda
// Typical REST API structure
GET /users → listUsers()
POST /users → createUser()
GET /users/:id → getUser()
PUT /users/:id → updateUser()
DELETE /users/:id → deleteUser()
Event-Driven Processing
// S3 upload triggers Lambda
exports.handler = async (event: S3Event) => {
for (const record of event.Records) {
const bucket = record.s3.bucket.name
const key = record.s3.object.key
// Process the uploaded file
await processImage(bucket, key)
}
}
Fan-Out Pattern
// One function triggers multiple functions
await Promise.all([
sendEmail(user),
updateAnalytics(user),
notifySlack(user),
createInvoice(user)
])
Best Practices
Keep Functions Small
Each function should do one thing:
✅ sendWelcomeEmail()
✅ processPayment()
✅ resizeImage()
❌ handleUserSignup() (too broad)
Minimize Cold Starts
// Keep dependencies outside handler
const db = new DatabaseClient() // Reused across invocations
export const handler = async (event: any) => {
// Handler code
}
Environment Variables
const config = {
apiKey: process.env.API_KEY,
dbUrl: process.env.DATABASE_URL,
region: process.env.AWS_REGION
}
Error Handling
export const handler = async (event: any) => {
try {
const result = await processEvent(event)
return { statusCode: 200, body: JSON.stringify(result) }
} catch (error) {
console.error('Function error:', error)
// Send to monitoring
await logError(error)
return {
statusCode: 500,
body: JSON.stringify({ error: 'Internal server error' })
}
}
}
Monitoring & Debugging
AWS CloudWatch: Logs and metrics Datadog: Full-stack monitoring Sentry: Error tracking X-Ray: Distributed tracing
// Structured logging
console.log(JSON.stringify({
level: 'info',
message: 'Processing user',
userId: user.id,
timestamp: new Date().toISOString()
}))
Cost Optimization
Right-Size Memory: More memory = faster execution = lower cost Minimize Dependencies: Smaller deployment packages Connection Pooling: Reuse database connections Caching: Reduce redundant executions Reserved Capacity: For predictable workloads
Testing Serverless Functions
// Unit test example
import { handler } from './function'
describe('handler', () => {
it('processes event correctly', async () => {
const event = { body: JSON.stringify({ name: 'Test' }) }
const result = await handler(event)
expect(result.statusCode).toBe(200)
expect(JSON.parse(result.body)).toHaveProperty('id')
})
})
Migration Strategy
- Start Small: Move one microservice or API endpoint
- Parallel Run: Keep existing system running
- Monitor Performance: Track cold starts, errors, costs
- Gradual Rollout: Increase traffic percentage
- Full Migration: Once confident
Common Use Cases
Image Processing: Resize, optimize, watermark Email Services: Transactional emails, newsletters Data Processing: ETL pipelines, analytics Authentication: Login, registration, password reset Payment Processing: Stripe, PayPal webhooks Notifications: Push, SMS, email alerts
Ready to go serverless? Contact us for architecture consulting.
Tags
LetsGrow Dev Team
Marketing Technology Experts
